笔趣录
会员书架
首页 >女生耽美 >大国院士 > 第二百零四章:NS方程的阶段性成果

第二百零四章:NS方程的阶段性成果

上一页 章节目录 加入书签 下一页

余芽函数?那是什么?”

一旁,德利涅也好奇的抬起了头,不止是费弗曼,就连他也没有听说过这个函数名称。

被两人盯着,徐川又愣了一下,脑海中的记忆迅速翻动着,随即懊恼的想拍自己一巴掌。

现在是2018年,高维余芽函数这个应用于函数极值点和奇点识别的函数还没有出现。

要等到两年后,这份函数才会被正式被他提出来,应用到当时的物理发现上。

他有着未来的记忆,但费弗曼和德利涅可没有。

不过既然已经提前让这份函数面世了,那也没办法,只能顺势将其提前推出来了。

好在这份研究成果是未来他自己研发出来的,而不是别人的。

不然他真的考虑一下是否要将其写出来。

毕竟在他看来,提前将未来别人的研究成果直接发出来,无异于是种剽窃行为,哪怕是这会原主心中都还没有相关的想法。

也难怪他会觉得费弗曼提出的思路更加容易,而费弗曼本人却卡在了这个问题上。

他之所以觉得更加容易,是因为多了未来十几年的知识,现在的一些难题,在未来都是已经解决了的。

呼了口气,徐川书房的角落中拖了一块黑板出来,这是他特意找普林斯顿大学要的,目的就是为了方便日常的数学研究。

沉思了一下,他拾起粉笔,开始写道:“设f:(r,0)→r一个光滑函数,若0是y=f(x)的ak型奇点,则一定存在一个微分同胚映射φ:(r,0)→(r,0),使得f°φ=±xk+1+f(0)”

“”

黑板上,徐川慢慢的将脑海中有关于高维余芽函数的构建与定理整理出来。

“对于映射芽f:(u,p)→(r2,0),其中ur2,f在p点a—等价于115奇点(标准型为f(x1,x2)→(x1,x1x22+x42+x52))充分必要条件为kf=1,hessλ(p)

一旁,费弗曼和德利涅目不转睛的看着。

从一开始的好奇,到惊讶,再到震惊。

随着黑板上的算式逐渐齐全,两人都从里面看到了这种函数的价值。

尤其是费弗曼,眼神中不仅有着浓浓的惊讶和惊喜,更有着不解的困惑。

从黑板上的这些数据来看,这种‘高维余芽函数’并不是什么很复杂的东西,甚至可以说很基础。

主要运用了矩阵的正定性用霍尔维茨定理和三维欧式空间r3中曲面为波阵面的波前面这两种数学方法。

通过这两种方法做了一定的等价类映射芽。

但正是这种看似基础的东西,却能完善的和狄利克雷函数融合在一起,在三维曲面中构建出一个正则的borel测度及一个单调下降的光滑函数序列。

基础的结构,基础的应用,却能完美的解决问题。

只是,这种数学方法,看起来似乎并不像是专门为了数学而研发出来的样子。

看着黑板上的算式,费弗曼心中升起了一股浓重的违和感。

相对比德利涅来说,他并不算一个纯粹的数学家。

因为他在物理方面也有一些发展,而且还是费米国家加速器实验室的特聘教授,专门为费米实验室计算各种物理数据,因此对于物理也有一些了解。

从黑板上的算式中,费弗曼敏锐的察觉到了这些公式在物理上用途,在他看来,这些公式并不像是为数学研发出来,更像是为物理量身定制的。

当然,它也可以运用到数学上。

比如现在,正好能为他解决等谱问题。

点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一页